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Abstract A direct numerical simulation with turbulent transport of a scalar quantity has been
carried out to grasp and understand a laminarization phenomena caused by a pipe rotation. In this
study, the Reynolds number, which is based on a bulk velocity and a pipe diameter, was set to be
constant; Rey, = 5283, and the rotating ratios of a wall velocity to a bulk velocity were set to be 0.5,
1.0, 2.0 and 3.0. A uniform heat-flux was applied to the wall as a thermal boundary condition.
Prandtl number of the working fluid was assumed to be 0.71. The number of computational grids
used in this study was 256 X 128 X 128 in the z-, - and ¢- directions, respectively. The turbulent
quantities such as the mean flow, temperature fluctuations, turbulent stresses and pressure
distribution and the turbulent statistics were obtained. Moreover, the Reynolds stress and the
scalar flux budgets were also obtained for each rotating ratio. The turbulent drag decreases with
the rotating ratio increase. The reason of this drag reduction can be considered that the additional
rotational production terms appear in the azimuthal turbulence component. The contributions of
convection and production terms to the radial scalar flux budget and also to the balance with
temperature-pressure gradient term arve significant. The dissipation and viscous diffusion terms
are neglgible in higher votating ratio.

I. Introduction
The utilization of heat transfer with turbulent swirling flow has often appeared
in many mechanical and chemical engineering fields; inlet part of a fluid
machinery, enhancement of mixing and chemical reaction in combustion
chamber, etc. Therefore, many experimental and numerical studies for the
effect of swirling flow on heat, mass and momentum transports have been
carried out in the world.

As for the velocity field of swirling flows, many experimental studies
(Murakami and Kikuyama, 1980; Kikuyama et al., 1983; Nishibori et al., 1987)
have been carried out during past decade. Several numerical studies by



ensemble average turbulence models regarding an axially rotating pipe flow DNS of turbulent

have been carried out; Hirai et al. (1988) used a Reynolds shear stress model and
Kawamura and Mishima (1992) used a two-equation model of turbulence.
These numerical studies predicted the drag reduction and the parabolic
velocity profile in circumferential velocity and were in good agreement with the
experimental data.

Recently, the turbulent drag reduction has been predicted by a large
eddy simulation (Eggels, 1994) and the direct numerical simulation (DNS)
Orlandi and Fatica (1997). Orlandi (1997) shows, the turbulent quantities
and the probability density function of helicity. Orlandi and Ebstein (2000)
investigate turbulent kinetic energy and Reynolds shear stresses budget.
However, scalar flux budget have not been presented. On the other hand,
the only two experiments regarding the heat transfer in an axially rotating
pipe flow have been carried out by Cannon and Kays (1969) and Reich and
Beer (1989). While the numerical study regarding both velocity and heat
transfer for rotating pipe flows has been reported by Satake and Kunugi
(1999). They investigate turbulent kinetic energy, Reynolds shear stress and
scalar flux budgets in the range of lower rotating ratio (N = 0.25, 0.3 and
0.35). In spite of low rotating ratio, the budgets of additional Reynolds
stress wu,ug, wuuy owing to pipe rotation affect the mechanism of
momentum and heat transfer.

The objectives of this study are to present turbulent kinetic energy,
Reynolds shear stress and scalar flux budget using DNS and to elucidate the
mechanism of the momentum and heat transfer due to the pipe rotation
through these equations in the range of higher rotating ratio N = 0.5, 1.0, 2.0
and 3.0).

II. Numerical procedure

The DNS code (Satake and Kunugi, 1999) with cylindrical coordinates can
numerically solve the momentum and continuity equations. A second-order
finite volume discretization scheme is applied to the spatial derivatives on a
staggered mesh system. In order to avoid a singularity at the center axis of the
pipe center, the incompressible Navier-Stokes equation can be rewritten with a
radial flux formulation. The radial momentum equation in conservative form
can be discretized as the same manner as Verzicco and Orlandi (1996). The
incompressible Navier-Stokes and continuity equations described in cylindrical
coordinate are integrated in time using the fractional-step method by Dukowics
and Divinsky (1992). A modified third-order Runge-Kutta scheme (Spalart ef al,
1991) is applied to the nonlinear terms treated explicitly and the second-order
Crank-Nicholson scheme is used for other terms implicitly. In our previous
study regarding turbulent pipe flow (Satake and Kunugi, 1998 a, b), this DNS
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Figure 1.
Computational domain

code has been shown in good agreement with the previous DNS results
obtained by Eggels et al (1994).
The energy equation is described as:
oT n ou, T 1oru,T 1ouyT
ot 0z r or 7 ¢

D
1 [PT 1 (T 18T
"~ Re,Pr|0z2  ror\  or 7202
The constant heat flux on the wall is defined by
dT
do = _/\d— 2)
7k

The computational domain with the wall heated by above heat flux ¢y are
shown in Figure 1. To impose the constant heat flux on the wall, the
nondimensional temperature is defined as:

9+(Z, 7, 1) = {<Tw>z,¢> — T, b, t)}/T*r 3)

where T, and 7, are the wall temperature and friction temperature,
respectively, and (), , express the average with respect to z, ¢. This method
adopted channel flow (Kasagi et al., 1992) and annulus flow (Kawamura et al.,
1992). The gradient of the bulk temperature 7', = (T), . 4, expressed by

dTm 25]0
= 4
dz PCp UbR ( )
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where Uy, is the mean bulk temperature. The nondimensional form of equation DNS of turbulent

(1) is derived by

307 ou0"  loru, 6T  10ugs6t
+ +- +=
ot 0z 7 or 7 0¢

1 [t 10 L +1820+
~ Pe. | 9z2  rar\ or r2 92

The boundary condition at the wall is also expressed as

] +2 )

07 @z,R,$,1) =0 (©6)

The equation (5) also can be discretized as the finite volume method and are
integrated in time using a modified third-order Runge-Kutta scheme (Spalart
et al., 1991) is applied to the nonlinear terms treated explicitly and the second-
order Crank-Nicholson scheme is used for other terms implicitly.

III. Computational condition

The computational domain of the fully developed turbulent pipe flow is shown
in Figure 1. The number of grid points is 256 X 128 X 128 in the z-, 7- and ¢ -
directions, respectively. The Reynolds number, which is based on bulk velocity
and pipe diameter D, is set to be constant; Re;, = 5283, and the rotating ratios N
of a wall velocity w4l to a bulk velocity U, were set to be 0.5, 1.0, 2.0 and 3.0.
A uniform heat-flux was applied to the wall as a thermal boundary condition.
Prandt]l number of the working fluid was set to be 0.71. Further details of the
velocity boundary condition for pipe geometry DNS can be found in Satake and
Kunugi (1998a). The result was in good agreement with Eggel’s (1994) DNS
data. As an initial condition, instantaneous velocity and scalar fields at fully
developed state were taken from the data of Satake and Kunugi (1998a). After
the velocity and thermal fields were judged to be fully developed, the time
integration of the repetition for obtaining the turbulent statistics as an
ensemble average was about 3,240 v/u? (180,000 steps).

IV. Results and discussion

Figure 2(a) and (b) show the axial mean velocity and temperature profiles
normalized by bulk velocity and temperature difference (7, — T.), respectively.
T, and T, are the wall and center temperatures, respectively. In velocity
profiles, excellent agreement between the present and Orlandi and Fatica’s
(1997) results is obtained at every rotating ratio. However, both these profiles
are fairly in good agreement with the experimental result of Reich and Beer
(1989). In accordance with Orlandi and Fatica (1997), the discrepancy can be the
influence of the entrance condition in the experimental measurement by Reich
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Figure 2.
(@) The axial mean

velocity, (b) temperature

profiles

Table 1.

The friction
coefficients and
Nusselt number for
every rotating
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and Beer (1989). The results of the present DNS and Orlandi and Fatica’s (1997)
one are fully developed turbulent flow. The temperature profiles in Figure 2(b)
show a similar trend.

Table I shows the friction coefficients and Nusselt number for every rotating
number. The reduction rate A/Ay of the wall friction A = 8(u,/U})? in the
present simulation is also in good agreement with the results of Orlandi and
Fatica’s (1997) DNS.

The present results of the streamwise velocity profiles normalized by
friction velocity .. are compared with the existing DNS results for four rotating
ratios investigated as shown in Figure 3.

N A/ Ao(SK) A/ Ao(OF) Nu/Nuy(SK)
0.0 1.0 1.0 1.0

05 0.8658 0.8386 09311
1.0 0.8533 0.8290 0.92278
2.0 0.8304 0.8247 0.8858

3.0 0.7874 - 0.8132
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At N = 0.0, the present profile is exactly in agreement with that of Eggles ef al.
(1994). The agreement of other turbulent quantities are described in Satake and
Kunugi (1998a, b). The agreement between the present and Orlandi and
Fatica’s (1997) results is very good at N = 0.5, 1.0 and 2.0. The present profiles
show that the log-low region disappears with increasing rotating ratio. The
same tendency was observed by Orlandi and Fatica’s (1997) results.

Figure 4 shows the mean temperature distribution normalized by friction
temperature. The distributions of the mean temperature are similar to that of
the mean velocity. At lower /, the logarithmic region shifts up, while at higher
N, the logarithmic region disappears and the buffer region seems to be
enlarged.

The velocity fluctuations normalized by bulk velocity U, are shown in
Figure 5(a)-(c). The results with N = 0 and 2 by Orlandi and Fatica (1997) are
also plotted in Figure 5(a)-(c) with open symbols. In case of N = 0.0 and 2.0,
good agreements between the present and Orlandi and Fatica’s (1997) velocities
are obtained. Isotropy among the turbulence components is pronounced in the
near wall region. The streamwise and circumferential components are the most
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Figure 3.

The present results of the
streamwise velocity
profiles normalized by
friction velocity




HFF
12,8

964

Figure 4.

The temperature
distribution normalized
by friction temperature

30
25 |—N=0
---- N=0.5
--=- N=1.0 -
- - N=20 L’
20— [-- N=30 /L
. O'=Pry+ :;/;;,‘2 .
® 15 i
0'=2.853Iny++2.347
10 |- L
- ‘.
5 —
0 TT 11 1 IAI_IIAI_Lll 1 1 1 llllll
3 4567 2 3 4567 2 3 4567

energetic and have the same value at N = 3.0, because the latter is produced
directly by the mean circumferential velocity.

Figure 6 shows nondimensional temperature fluctuation normalized friction
temperature versus the wall coordinate (y ). The peak point moves slightly
towards the center pipe with increase of the rotating ratio. This behavior is
similar to velocity fluctuation of streamwise component as shown in Figure 5(a).

Figure 7 shows the total and the Reynolds shear stresses #/}«/;" normalized
by the friction velocity. Almost all cases are in good agreement with Orlandi
and Fatica’s results (1997). With increase of N, the distribution of «/}u/}
decrease from the location of the peak to the pipe center.

Figure 8 shows the Reynolds shear stresses #/«'} normalized by the
friction velocity. This stress is strongly affected by the pipe rotation. At
N = 0.5, 1.0 and 2.0, the present results show an excellent agreement between
the present results and with Orlandi and Fatica’s (1997) results. At N = 3.0, the
Reynolds stress is most enhanced in the whole region.

Figure 9 shows the Reynolds shear stresses #/]#/} normalized by the
friction velocity. Results obtained by Orlandi and Fatica’s (1997) show that
there are regions of negative correlation. They indicate that the radial
oscillation of «/ /7, at high Nis due to the large scale structures in the center of
the pipe. The present results also show similar oscillations at higher N. To
restrict these oscillations more computational time is required.

Figures 10-12 show scalar fluxes of «/; 6/+, u/, ¢'+ and «'j; '+ normalized
by the friction velocity, respectively. At N = 0.5 and 1.0, the location of
maximum point is the same compared with N = 0.0. The peak point decreases
at N = 2.0, 3.0. This is similar to the distribution of #/]%"}". According to this
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Figure 5.

The velocity fluctuations
normalized by bulk
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Figure 5.

Figure 6.

Temperature fluctuation
normalized friction
temperature
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result, it is evident that u’: and 0'" are strongly correlated. The distribution of
u'F 0+ decreases from the location of peak point to the pipe center. It is most
pronounced at higher N. At higher N, the radial oscillation takes place at the

whole region such as «/]«'j. This shows the strong correlation between 'y
and 6'*.
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The fully developed turbulent field in rotating pipe is homogeneous in both the
streamwise and circumferential directions, therefore, the budget equation for
the turbulent kinetic energy % normalized by the friction velocity can be

expressed as:
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Figure 7.

The total and the
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friction velocity
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Figure 9.

The Reynolds shear
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friction velocity
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Figure 13(a)-(e) shows each term in equation (7) for each rotating ratios. At the
wall, the viscous term balances the dissipation term. The magnitude of these
increases with the high rotating ratio increases.

The budget of temperature variance kg = % 6'? is derived as:
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Figure 14(a)-(e) shows the temperature variance budget normalized by the
friction velocity. The budget of % and %, agree well because of the Reynolds
analogy. All terms increase with_the increase of V.

The budget equations for the u/u/ is
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Figure 15(a)-(e)shows the Reynolds shear stress #/}«/} budget normalized
by the friction velocity. The production is a dominant gain term in the

whole region. A half of the production is lost by the dissipation, while the
other is redistributed to «/[u/ and w/ju'j through the pressure strain
correlation. The pressure strain terms play a key role to the other normal
stress because the effect of rotating on the terms does not appear explicitly

in equation (9).
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Figure 16(a)-(e) shows the Reynolds shear stress u’ju’ *+ budget normalized by DNS of turbulent
the friction velocity. The convection, production and the velocity pressure
gradient terms are the dominant ones in the whole region. The distribution of
three terms in case of N = 1 shows the concave shape at y* = 30. This is
because mean circumferential velocity U, increases near wall region. Similar
behavior is also shown in the result of Orlandi and Ebstein (2000). The other

terms are negligibly small.
The budget equations for the «'[«/; is rewritten as:

RS 1+, 0+, 0+ U+ +

1 or wywp;, uw,u g, T ¢——u’+ /+8Uz

0 rt ort rt £ ort 7o gyt
Turbulent diffusion Production

7[]?; u/;‘%apur _Mlgapl-i-

+,+
wlu——
PUE gt o 0zt
- Ne——_— -
Convective transport Velocity pressure gradient

1
Re.

14,0+ 1+, 0t
1 9 7+au¢u2 wgu
rtort ort r+

Viscous diffusion

—+

2 | (o) (au\ (Lo wr) (Lo (05 fout
Re, |\ art | \or* rto¢p vt ) \rt oo ozt ozt

heat transfer

979

Dissipation

1D

Figure 17(a)-(e) shows the Reynolds shear stress '}/ ;: budget normalized by
the friction velocity. For all cases, the viscous term balances the dissipation
term at the wall. The dominant term is the velocity-pressure-gradient (VPG)
term in the whole region, which balance the sum of the convection and the

production terms.
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Figure 16.
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HFF The following budget equations for the /4’ jg 1s rewritten as:

12,8
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Figure 18(a)-(e) shows the Reynolds shear stress «/,"«/)" budget normalized by
the friction velocity. The VPG term contributes as the loss at y ™ < 80, balances
the sum of convection and the production terms. But the contribution becomes
inverse at y ™ > 80. The gain for the VGP term is most pronounced at NV = 3.0.
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The budget equation for the u//«'} is rewritten as:

s an an ax 1+t 1t + +
_187/ w,u,u, 2M7’u¢u¢ 4 2u Tyt ¢ ol T /+U¢
— + w, uy, +au', uy,
0= r+ or+ r+ 7 rt
Turbulent diffusion Production Convective transport

S T
—27/tl+ ap”r +ii <7+ au’ju’j) -9 (M/:_M/:— _ ul¢ul¢>

ar+ r+? r+?

Velocity pressure gradient Viscous  diffusion

- S
| (3 2o (Vews W ou 13)
o) T ap rt s

N

Dissipation

Note that there is direct production term owing to the rotation. Figure 19(a)-(e)
shows the Reynolds shear stress #/#/" budget normalized by the friction
velocity.

The distribution of the convection and the production terms coincide
because of the same expression in equation (13).

These terms are pronounced with the increase of N. At N = 0.0, the VPG
term contributes as the gain in the whole region.

In consequence of the increase of N, the contribution of the term becomes
inverse.

At N = 3.0, the term is dominant as the loss, it balances the sum of
convection and the production terms. The other terms are negligible compared
with the dominant three terms.
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Figure 19.
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HFF The budget equations for the «/ju/; is rewritten as:

12,8
990
+ot 0t 1t AV AYas +
_ Lortutuguy gy oo dUs
_ Sy -
0=_r" ar+ rt o7
Turbulent diffusion Production

v T
g le 2, 0y

r rt r RYo3
—_— —

Convective transport Pressure strain

rtart ort r+

YT an +,1+ 14,1+
I A P L L ALY
rt?

Viscous diffusion

2
2 % + i%_Fﬂ
. or+ rt o 7t

2 N 2
L (s
ozt

Dissipation

(14)

Figure 20(a)-(e) shows the Reynolds shear stress M’;ﬁu’j; budget normalized

by the friction velocity.

At the wall, the viscous term balances the dissipation. Although the
magnitude of the viscous term and dissipation at the wall is larger than the
increase of N, the balance of the two terms is quite similar. But the dissipation,
the production and the convection terms drastically change except for near wall
region. The convection and the production terms become larger than
dissipation and they are balanced with the pressure strain term.

The budget equation of the turbulent heat fluxes for the «/)6'+ is rewritten

as:
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Figure 21(a)-(e) show the scalar flux «/; '+ budget normalized by the friction
velocity. It is noted that the pressure-temperature-gradient correlation is a
large loss term at N = 3.0 and its magnitude is larger than the dissipation
term. The sum of temperature-gradient correlation and the dissipation terms
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Figure 21.

The scalar flux «/} '+

budget normalized by
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HFF are balanced with the production terms. The profiles of each term for #/) s/}

12,8 in Figure 15(a)-(¢) are quite similar to the corresponding term for u/ 6/+ 1n
Figure 16(a)-(e). These similarities must be associated with the correla‘aon u
and 6'".
The budget equation of the turbulent heat fluxes for the «/ 6/+ is rewritten

996 as:
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Figure 22(a)-(e) shows the scalar flux «/ 6+ budget normalized by the
friction velocity. The convection term is larger than the production term
except at N =0.0. At N = 3.0, temperature-pressure-gradient correlation
term 1s balanced with the sum of the production and the convection terms.
The viscous diffusion, dissipation, turbulent diffusion terms are negligibly
small.

The budget equation of the turbulent heat fluxes for the '’ ;f 0'* is rewritten
as:
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Figure 22.
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Figure 23(a)-(d) shows the scalar flux «/}; '+ budget normalized by the friction

. the scalar Hux o, | leed )
velocity. The whole distribution is similar to those of #/J#/y as shown in
Figure 17. The temperature-pressure-gradient term is balanced with the sum of
the convection and production terms.

To elucidate the energy transfer, the pressure strain correlation is shown in
Figure 24(a)-(c). For an ordinary pipe at N = 0, the pressure strain term of ¢s3
is positive in the whole region as shown in Figure 24(c). The pressure strain
term of ¢ is positive to very in vicinity of the wall and become negative at the
other region as shown in Figure 24(a). The pressure strain term of ¢y is
negative near wall region in case of N = 0 and 0.5 at y™ > 10 as shown in
Figure 24(b). The ordinary redistribution from ¢ to ¢ and ¢33 occurs. But at
N = 1.0, 2.0 and 3.0, the negative region in the pressure strain term of o
disappear in Figure 24(b). This behavior is also shown in #/f /'t budget in
Figure 19. Thus, for higher rotating, the redistribution mechanism is
completely different compared with the ordinary nonrotating pipe flow.
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Figure 23.

The scalar flux '} 6/'+
budget normalized by
the friction velocity
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The transport process of energy budget in shear stress equation is shown in DNS of turbulent

Figure 25(a). The figure shows the processes of the redistribution,
transportation, production, and dissipation. Note that the budget of turbulent
kinetic energy, and the diffusion process is not described here. The elliptic
symbol shows the production term in Reynolds shear stress equation. Open
symbol shows dissipation g; in each Reynolds stress equation. The upper
region surrounded by chain line defined energy transport mechanism of N = 0
and another region surrounded by chain line defined energy transport
mechanism of N # 0. U,, 0U,4/d7 is contributed to the production of each
stress equation. The pressure strain correlation for normal component ¢11, ¢,
¢33 play a key role of the redistribution process for each stress equations. The
transport process of energy budget in scalar flux equation is shown in
Figure 25(b). The figure shows the processes of production, and dissipation.
Note that the budget of temperature variance kg = % 0’2 does not contain the
redistribution process for pressure correlation, and the equation must be
dissipated by itself. The elliptic symbol shows the production term in scalar
flux equation. Open symbol shows dissipation ¢;; in each scalar equation. The
left region surrounded by chain line defined energy transport mechanism of
N = 0 and another region surrounded by chain line defined energy transport
mechanism of N # 0. When the rotating causes the production of «/ 6/, the
stress equation is generated by Uy 0Ug07 near the wall region. The
convection u’;f ¢t associated with mean rotating velocity Uy becomes
comparable in magnitude with production term of N =3 considered in
Figure 23(d). This energy process contributes production of #/ §/+. Thus, the
scalar transportation in circumferential connect to the radial direction. When
the rotation is high, the terms with Uy, 0U /97 is dominant compared with
other term in «/} '+ and '} '+ flux equations.

Finally, instantaneous ﬁow and temperature fields are visualized to
investigate how the near wall structures are affected by the rotating wall.
A commercially available 3-D graphics software tool, Application Visualization
System (AVS, AVS Inc.), was used for visualization of various turbulence
structures. The volume visualized has the half-cut view of the pipe as shown in
Figures 26-27. Figure 26(a) for N = 0.0, (b) for N = 2.0, show the gray and
black contour surfaces that represent the low-pressure and low-speed region
corresponding to the vortical structure and wall-layer streaks, respectively. At
N = 2.0, the motion of streaky structure is clockwise, which strongly indicates
that this structure is affected by the rotating wall. The vortical structure is
observed more frequently and is of larger size, while at N = 0.0 they show
typical banana-shaped inclined streamwise vortices. Figure 27(a) for N = 0.0,
(b) for N = 2.0 show the gray and black contour surfaces that represent the
low-pressure and high-temperature region corresponding to the vortical
structure and wall-layer thermal streaks, respectively. Kasagi and Ohtsubo
(1993) visualized the location of the thermal streak which are almost same as
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that of low-speed streak in a DNS database of channel flow with Pr = 0.71, also DNS of turbulent

found that the coincidence exists for nonrotating pipe flow as shown in
Figures 26(a) and 27(a). For rotating pipe flow, the correlation between thermal
streak and low-speed streak is also observed. Thus, the similarity of velocity
and temperature in the statistics values also appears in the turbulent structure.

Conclusion

DNS on a turbulent rotating pipe flow with heated wall was carried out for
Re = 5,283. The present results for velocity field are in good agreement
with the Orlandi and Fatica’s DNS data and the Orlandi and Ebstein’s DNS
data.

In accordance with the distribution of pressure strain correlation, at high
N, the redistribution mechanism is quite different from that of nonrotating
pipe. Especially, in the budget of «/;"«/}, at higher N, the VPG term changes
the contribution and balances the sum of convection and production
term. Then, the other is negligibly small. The scalar flux budget terms
obtained are quite similar to the correspondence to the Reynolds shear stress
budgets.
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